
MethylAction: Detecting differentially methylated
regions (DMRs) that distinguish disease subtypes

Jeff Bhasin
2016-01-15

Contents

Purpose 1

Prerequisites 1

Installation 2

Obtaining the Example Data 2

Preprocessing 2

Describing the Experimental Design . 2

Loading Reads and Generating Count Tables . 3

Differentially Methylated Region (DMR) Detection 4

Interpreting the results . 4

Vizualization of DMRs 5

Permutation and Bootstrap Testing 7

Purpose

This how-to will demonstrate the use of MethylAction to detect differentially methylated regions (DMRs)
among three groups using data from MBD-isolated Genome Sequencing (MiGS). While MethylAction is
designed for genome-wide analysis, this example data is only for a subset of the genome and a subset of
samples so the example can be worked through quickly. Please refer to the function documentation for
advanced options.

Prerequisites

• R version 3.2.1 or later installed (download from http://cran.r-project.org/)
• A linux/unix-based server or workstation (includes Mac OS X)

RAM and CPU requirements will depend on the depth of the sequencing and the number of samples and
groups. We recommend very high performance machines. As a reference, we used a linux server with 20 cores

1

http://cran.r-project.org/

of 2.80GHz CPUs and 64GB of RAM for a genome-wide analysis of 22 samples across 3 groups. A high
performance computing cluster (HPC) was used to obtain 1,000s of permutations.

For the purposes of the example, less CPU and RAM are required. This how-to has been tested on a MacBook
Pro with a 2.4 GHz CPU and 8 GB of RAM.

Installation

First, start R (by typing the “R” command at the linux command line) and install pre-requisite packages
from Bioconductor:

source("http://bioconductor.org/biocLite.R")
biocLite(c("GenomicRanges","IRanges","devtools","DESeq","GenomicAlignments",

"Repitools","Rsubread","ggbio"))

Then, install both Goldmine and MethylAction from GitHub. Be sure to accept installation of any additional
pre-requisite packages from CRAN.

library(devtools)
install_github("jeffbhasin/goldmine")
install_github("jeffbhasin/methylaction")

Obtaining the Example Data

Please obtain the “methylaction_demo.tar.gz” file and extract it. This archive can be donwloaded from the
methylaction_demo repository releases page. This contains all the example input data needed to complete
this how-to.

From the linux command line, use the command “tar -zxvf methylaction_demo.tar.gz” for extraction.

Note that your session of R must have the working directory set to the location of the “methylaction_demo”
folder extracted from the tar.gz file so paths to files in this how-to will be valid. Use the “setwd()” function
to set this directory.

For example (change to your location):

setwd("/Users/bhasinj/Documents/methylaction_demo")

Preprocessing

First, start R, and load the “methylaction” R package into the session.

library(methylaction)

Describing the Experimental Design

Unique sample identifiers, paths to BAM files, group assignments, and any sample covariates are defined
in a CSV file. Please see “input/samples.csv” for an example of the format. Note that comparison groups
must be ordered as you want the groups to appear in the output results. This is important, because in

2

http://www.bioconductor.org
https://github.com/jeffbhasin/methylaction_demo/releases

the output, patterns between the groups will be coded using sequences of binary digits, where each digit
represents a group, and this is the same as the order the groups are encountered in the sample CSV file.
Optionally, a column called “color” can be provided that defines colors for each groups. These will be used in
certain plotting and reporting functions. If this column is omitted, colors are automatically assigned using
RColorBrewer.

The sample CSV file can be read into R using the readSampleInfo() command:

samp <- readSampleInfo("input/samples.csv")
print(samp)

The command will output confirmation of group sample sizes and group order.

Loading Reads and Generating Count Tables

All read alignments are read and processed from the BAM files into an RData workspace that is saved to
disk, and this prevents the user from having to re-process data again for each run of MethylAction. The
getReads() function obtains the coordinates of the read alignments from the BAM file. The initial stage of
the program works with fragment counts in 50bp windows, which are also computed once and saved by the
function getCounts().

There are two other variables specific to the experiment that are needed in the next step. These are the
window size (we recommend 50bp) and the fragment size used for generating the sequencing library. This
fragment size is not the read length – it is the average size of a fragment in the sequencing library that was
prepared. Often this number is available from BioAnayzer results, and should be known to whomever did the
sequencing library preparation for your study. In the case of paired end data, the fragsize variable can be set
to “paired” and valid mate pairs will be used.

First, define the variables that will be needed for the preprocessing functions:

chrs <- "chr22"
fragsize <- 120
winsize <- 50
ncore <- 1

While the demo BAM files contain only chr22 to reduce size, MethylAction can be run genome-wide on your
own dataset. To do this, specify “chrs” as a vector of chromosome names. We recommend excluding the sex
chromosomes in mixed-sex cohorts.

For human autosomes (chr1 to chr22)
chrs <- paste0("chr",1:22)
Including the sex chromosomes
chrs <- paste0("chr",c(1:22,"X","Y"))

Then, read in alignments and generate binned count tables (these steps may be memory, disk, and CPU
intensive):

reads <- getReads(samp=samp, chrs=chrs, fragsize=fragsize, ncore=ncore)
counts <- getCounts(samp=samp, reads=reads, chrs=chrs, winsize=winsize, ncore=ncore)

We recommend saving all of the above into a single preprocessing RData, which can be loaded prior to
running the DMR detection step described next.

3

save(samp, reads, counts, winsize, fragsize, chrs, file="output/prepro.rd",compress=T)

For future runs of DMR detection, the saved RData can be loaded rather than spending time re-preprocessing
the data.

Differentially Methylated Region (DMR) Detection

With all the preprocessing completed, differentially methylated regions (DMRs) can be detected using a call
to the methylaction() function. There are many options to this function that will affect the DMR detection.
Here we have used recommended defaults. See the function documentation for more details. This function
performs multiple steps, which are all CPU, RAM, and disk intensive when run on larger data sets.

First, set the number of cores to use based on your hardware (we recommend reducing this number if there
are memory issues):

ncore <- 1

Then, run methylaction() to call DMRs:

ma <- methylaction(samp=samp, counts=counts, reads=reads, ncore=ncore)

Finally, save the results object to disk:

save(ma,file="output/ma.rd", compress=T)

It is also useful to save a DMR list as a CSV file for viewing in a spreadsheet application.

write.csv(makeDT(ma$dmr), row.names=FALSE, file="dmrs.csv")

Interpreting the results

The function methylaction() is designed to output a great deal of information about the internals of the
DMR calling in order to facilitate comparisons between different settings and to prevent needing to re-run
the command on large datasets to view intermediate states. The output object is a list. For a list of all
detected DMRs, look at ma$dmr. Each DMR is assigned a pattern code, where each digit represents a group.
The pattern indicates the differential methylation status between the groups. All groups with the digit is 1
are hypermethylated with respect to all groups with the digit 0. See the ma$args object for the arguments
provided to the call of methylaction() that generated the output. If you want to access data from any internal
steps of the function, see the objects nested under ma$data.

The maSummary() function provides details about the intermediate stages of the method.

maSummary(ma)

stat count percent
1 Window Size 50
2 Total Windows 1026091
3 All Zero Windows (filtered) 440064 42.89
4 All Below FDR Windows (filtered) 409356 39.89
5 Signal Windows (move on to stage one) 176671 17.22

4

6 Windows Tested in Stage One 176671
7 Sig Pattern in Stage One 158274 89.59
8 Non-Sig Pattern in Stage One 0 0
9 Ambig Pattern in Stage One 18397 10.41
10 Regions Formed By Joining Adjacent Patterns 1351
11 Regions Tested in Stage Two 1351
12 Regions That Pass ANODEV 1330 98.45
13 ANODEV Sig with Sig Pattern 1263 94.96
14 ANODEV Sig with Non-sig Pattern 0 0
15 ANODEV Sig with Ambig Pattern 67 5.04
16 Total DMRs 1263

The built-in function table() can be used to obtain counts of DMRs by pattern and “frequent” classification.

table(madmrpattern,madmrfrequent)

FALSE TRUE
001 41 53
010 465 21
011 98 86
100 80 12
101 241 72
110 87 7
ambig 0 0

Vizualization of DMRs

DMRs can be visualized genome-wide via a heatmap or karyogram.

maHeatmap(ma)

5

6

maKaryogram(ma=ma, reads=reads)

In this case, the Karyogram only spans chr22 due to the subset of data for this example.

It is also useful to view DMRs and the windowed sequencing read counts in a genome browser, such as the
UCSC genome browser. The maBed() and maTracks() functions can create BED files suitable for uploading
as custom tracks to http://genome.ucsc.edu/.

maBed(ma,file="dmrs.bed")
maTracks(ma=ma, reads=reads, path="beds")

Permutation and Bootstrap Testing

Because of the two stage testing approach, type I error rates may be inflated with this method. To determine
if this level is acceptable, we have implemented permutation and bootstrapping approaches. This establishes
a false discovery rate (FDR) for each pattern of DMR among the groups. If these FDRs are too high, they
can be recalculated at lower p-value thresholds until they reach acceptable levels. Then, DMRs filtered at
this p-value can be used as the definitive list for the study.

Bootstraps can be enabled by adding the “nperms” and “perm.boot” options to methylaction(). The resulting
output list will then have an “fdr” object that reports false discovery rates (FDRs).

ma <- methylaction(samp=samp, counts=counts, reads=reads, perm.boot=T, nperms=3, ncore=ncore)

print(ma$fdr)

pattern type nDMRs permMean permSD permCV FDRpercent
001 all 94 31.33 18.56 0.59 33.33
001 frequent 53 3.33 3.51 1.05 6.29
001 other 41 28.00 17.06 0.61 68.29
010 all 486 6.33 6.03 0.95 1.30
010 frequent 21 2.67 3.79 1.42 12.70
010 other 465 3.67 3.21 0.88 0.79
011 all 184 255.33 379.16 1.48 138.77
011 frequent 86 79.00 128.27 1.62 91.86
011 other 98 176.33 251.24 1.42 179.93
100 all 92 287.00 495.37 1.73 311.96
100 frequent 12 91.67 158.77 1.73 763.89

7

http://genome.ucsc.edu/

pattern type nDMRs permMean permSD permCV FDRpercent
100 other 80 195.33 336.60 1.72 244.17
101 all 313 22.67 34.20 1.51 7.24
101 frequent 72 2.67 2.52 0.94 3.70
101 other 241 20.00 32.08 1.60 8.30
110 all 94 216.67 206.29 0.95 230.50
110 frequent 7 61.00 38.97 0.64 871.43
110 other 87 155.67 167.46 1.08 178.93
all all 1263 819.33 1063.48 1.30 64.87
all frequent 251 240.33 320.38 1.33 95.75
all other 1012 579.00 743.21 1.28 57.21

Finally, save the results object to disk:

save(ma,file="output/ma.rd", compress=T)

If “perm.boot” is set to be FALSE, then regular permutations (sampling without replacement) are performed
rather than bootstrapping (sampling with replacement).

See the maPerm(), maPermMerge(), and maPermFdr() for manual methods to run permutations. These
are useful for spreading permutations across multiple machines or in a high performance computing (HPC)
environment.

8

	Purpose
	Prerequisites
	Installation
	Obtaining the Example Data
	Preprocessing
	Describing the Experimental Design
	Loading Reads and Generating Count Tables

	Differentially Methylated Region (DMR) Detection
	Interpreting the results

	Vizualization of DMRs
	Permutation and Bootstrap Testing

